Терморезисторы принцип работы

Содержание

Терморезисторы. Виды и устройство. Работа и параметры

Терморезисторы принцип работы

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры

  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.

Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Читайте также  Термоголовка для радиатора отопления принцип работы

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Применение термисторов

  • Измерение температуры.
  • Бытовая техника: морозильники, фены, холодильники и т.д.
  • Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
  • Кондиционеры: распределение тепла, контроль температуры в помещении.
  • Отопительные котлы, теплые полы, печи.
  • Блокировка дверей в устройствах нагревания.
  • Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
  • В мобильных телефонах для компенсации нагрева.
  • Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
  • Контроль наполнения жидкостей.

Применение позисторов

  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/termorezistory/

Что такое терморезисторы и для чего они нужны

Терморезисторы принцип работы
При ремонте бытовой техники приходится сталкиваться с большим разнообразием деталей и компонентов. Часто новички не знают, что такое терморезистор и какими они бывают. Это полупроводниковые компоненты, сопротивление которых изменяется под воздействием температуры. Благодаря этим свойствам они нашли широкий диапазон применений. Начиная от термометров, заканчивая ограничителями пускового тока. В этой статье мы ответим на все интересующие вас вопросы простыми словами.

Устройство и виды

Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

  • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
  • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).

Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

Основные характеристики:

  • Номинальное сопротивление при 25 градусах Цельсия.
  • Максимальный ток или мощность рассеяния.
  • Интервал рабочих температур.
  • ТКС.

Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

Читайте также  Трансформатор тесла принцип работы

Где применяется

Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:

  1. Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
  2. Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
  3. Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
  4. Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.

Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:

Наверняка вы не знаете:

Источник: https://samelectrik.ru/chto-takoe-termorezistory.html

Терморезистор

Терморезисторы принцип работы

> Теория > Терморезистор

Термодатчик относится к числу наиболее часто используемых устройств. Его основное предназначение заключается в том, чтобы воспринимать температуру и преобразовывать ее в сигнал. Существует много разных типов датчиков. Наиболее распространенными из них являются термопара и терморезистор.

Виды

Обнаружение и измерение температуры – очень важная деятельность, имеет множество применений: от простого домохозяйства до промышленного. Термодатчик – это устройство, которое собирает данные о температуре и отображает их в понятном для человека формате. Рынок температурного зондирования демонстрирует непрерывный рост из-за его потребности в исследованиях и разработках в полупроводниковой и химической промышленностях.

Термодатчики в основном бывают двух типов:

  • Контактные. Это термопары, заполненные системные термометры, термодатчики и биметаллические термометры;
  • Бесконтактные датчики. Это инфракрасные устройства, имеют широкие возможности в секторе обороны из-за их способности обнаруживать тепловую мощность излучения оптических и инфракрасных лучей, излучаемых жидкостями и газами.

Термопара (биметаллическое устройство) состоит из двух разных видов проводов (или даже скрученных) вместе. Принцип действия термопары основан на том, что скорости, с которыми расширяются два металла, между собой отличаются. Один металл расширяется больше, чем другой, и начинает изгибаться вокруг металла, который не расширяется.

Терморезистор – это своего рода резистор, сопротивление которого определяется его температурой. Последний обычно используют до 100 ° C, тогда как термопара предназначена для более высоких температур и не так точна. Схемы с использованием термопар обеспечивают милливольтные выходы, в то время как термисторные схемы – высокое выходное напряжение.

Важно! Основное достоинство терморезисторов заключается в том, что они дешевле термопар. Их можно купить буквально за гроши, и они просты в использовании.

Принцип действия

Терморезисторы обычно чувствительны и имеют разное термосопротивление. В ненагретом проводнике атомы, составляющие материал, имеют тенденцию располагаться в правильном порядке, образуя длинные ряды. При нагревании полупроводника увеличивается количество активных носителей заряда. Чем больше доступных носителей заряда, тем большей проводимостью обладает материал.

Сопротивление медного провода

Кривая сопротивления и температуры всегда показывает нелинейную характеристику. Терморезистор лучше всего работает в температурном диапазоне от -90 до 130 градусов по Цельсию.

Важно! Принцип работы терморезистора основан на базовой корреляции между металлами и температурой. Они изготавливаются из полупроводниковых соединений, таких как сульфиды, оксиды, силикаты, никель, марганец, железо, медь и т. д., могут ощущать даже небольшое температурное изменение.

Электрон, подталкиваемый приложенным электрическим полем, может перемещаться на относительно большие расстояния до столкновения с атомом. Столкновение замедляет его перемещение, поэтому электрическое «сопротивление» будет снижаться. При более высокой температуре атомы больше смещаются, и когда конкретный атом несколько отклоняется от своего обычного «припаркованного» положения, он, скорее всего, столкнется с проходящим электроном. Это «замедление» проявляется в виде увеличения электрического сопротивления.

Для информации. Когда материал охлаждается, электроны оседают на самые низкие валентные оболочки, становятся невозбужденными и, соответственно, меньше двигаются. При этом сопротивление движению электронов от одного потенциала к другому падает. По мере увеличения температуры металла сопротивление металла потоку электронов увеличивается.

Особенности конструкций

По своей природе терморезисторы являются аналоговыми и делятся на два вида:

  • металлические (позисторы),
  • полупроводниковые (термисторы).

Позисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к этим устройствам предъявляются некоторые требования. Материал для их изготовления должен обладать высоким ТКС.

Для таких требований подходят медь и платина, не считая их высокой стоимости. Практически широко применяются медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное применение, не более 180 градусов.

Позисторы PTC предназначены для ограничения тока при нагревании от более высокой рассеиваемой мощности. Поэтому их размещают последовательно в цепь переменного тока, чтобы уменьшить ток. Они (буквально любой из них) становятся горячими от слишком большого тока. Эти приспособления используют в устройстве защиты цепи, таком как предохранитель, в качестве таймера в схеме размагничивания катушек ЭЛТ-мониторов.

Для информации. Что такое позистор? Прибор, электрическое сопротивление которого растет в зависимости от его температуры, называется позистором (PTC).

Термисторы

Устройство с отрицательным температурным коэффициентом (это когда, чем выше температура, тем ниже сопротивление) называется терморезистором NTC.

Для информации. Все полупроводники имеют меняющееся сопротивление по мере увеличения или уменьшения температуры. В этом проявляется их сверхчувствительность.

Характеристики и обозначение термистора

Термисторы NTC широко используются в качестве ограничителей пускового тока, самонастраивающихся сверхтоковых защит и саморегулируемых нагревательных элементов. Обычно эти приборы устанавливаются параллельно в цепь переменного тока.

Их можно встретить повсюду: в автомобилях, самолетах, кондиционерах, компьютерах, медицинском оборудовании, инкубаторах, фенах, электрических розетках, цифровых термостатах, переносных обогревателях, холодильниках, печах, плитах и других всевозможных приборах.

Читайте также  Мембранный клапан принцип работы

Термистор используется в мостовых цепях.

Технические характеристики

Закон Ома для неоднородного участка цепи

Терморезисторы используют в батареях зарядки. Их основными характеристиками являются:

  1. Высокая чувствительность, температурный коэффициент сопротивления в 10-100 раз больше, чем у металла;
  2. Широкий диапазон рабочих температур;
  3. Малый размер;
  4. Простота использования, значение сопротивления может быть выбрано между 0,1 ~ 100 кОм;
  5. Хорошая стабильность;
  6. Сильная перегрузка.

Качество прибора измеряется с точки зрения стандартных характеристик, таких как время отклика, точность, неприхотливость при изменениях других физических факторов окружающей среды. Срок службы и диапазон измерений – это еще несколько важных характеристик, которые необходимо учитывать при рассмотрении использования.

Компактные терморезисторы

Область применения

Термисторы не очень дорогостоящие и могут быть легко доступны. Они обеспечивают быстрый ответ и надежны в использовании. Ниже приведены примеры применения устройств.

Термодатчик воздуха

Автомобильный термодатчик – это и есть терморезистор NTC, который сам по себе является очень точным при правильной калибровке. Прибор обычно расположен за решеткой или бампером автомобиля и должен быть очень точным, так как используется для определения точки отключения автоматических систем климат-контроля.  Последние регулируются с шагом в 1 градус.

Автомобильный термодатчик

Терморезистор встраивается в обмотку двигателя. Обычно этот датчик подключается к реле температуры (контроллеру) для обеспечения «Автоматической температурной защиты». Когда температура двигателя превышает заданное значение, установленное в реле, двигатель автоматически выключается. Для менее критического применения он используется для срабатывания сигнализации о температурном превышении с индикацией.

Датчик пожара

Можно сделать свое собственное противопожарное устройство. Собрать схему из термистора или биметаллических полосок, позаимствованных из пускателя. Тем самым можно вызвать тревогу, основанную на действии самодельного термодатчика.

В электронике всегда приходится что-то измерять, например, температуру. С этой задачей лучше всего справляется  терморезистор  – электронный компонент на основе полупроводников. Прибор обнаруживает изменение физического количества и преобразуется в электрическое количество. Они являются своего рода мерой растущего сопротивления выходного сигнала. Существует две разновидности приборов: у позисторов с ростом температуры растет и сопротивление, а у термисторов оно наоборот падает. Это противоположные по действию и одинаковые по принципу работы элементы.

Источник: https://jelectro.ru/teoriya/termorezistor.html

Виды

Простой принцип работы позволяет создавать термопреобразователи сопротивления (научное название устройства) различных габаритов и форм. В зависимости от области применения и материала, датчики могут иметь различную форму и соответствующий тип: стержневой, трубчатый, дисковой или бусинковый. Особых ограничений нет, поэтому на каждой отрасли существуют свои стандарты датчиков.

Принцип действия

Терморезисторы – это датчики, работа которых зависит от двух показателей: температуры и сопротивления. Второй параметр меняется в зависимости от значений первого, при достижении необходимой отметки происходит срабатывание. Существует четыре разновидности терморезисторов:

  • низкотемпературные – для работы при значениях менее 170 К;
  • для средних температур – от 170 до 510 К;
  • для высоких – работают в диапазоне от 510 до 900 К;
  • особый класс – до 1300 К.

Обратите внимание! Для обозначения температуры в рабочем диапазоне терморезистора используют Кельвин, а не градус Цельсия. Это связано с уравнением Стейнхарта-Харта, где в расчетах по формуле учитываются абсолютная температура и сопротивление.

Пример и изображение терморезистора в схеме

Наиболее точные терморезисторы могут использоваться в качестве эталонов – точность реагирования у них доходит до долей градуса. Помимо температурного режима, приборы отличаются по способу нагрева.

Прямой и косвенный нагрев

Существует два типа устройств:

  1. Прямого нагрева – реагируют на температуру окружающей среды либо на проходящий через деталь ток. Их большинство, применяются они повсеместно.
  2. Косвенного нагрева – комбинированные приборы. Представляют собой терморезистор, температуру которого задает отдельный изолированный нагревательный элемент. Ток в этом случае проходит через него, а не через сам датчик.

Дальнейшее разделение основано на различиях в конструкции и материалах изготовления.

Особенности конструкций

Изменение температуры паяльника с помощью диммера

Классификация основывается на ключевом параметре – температурном коэффициенте сопротивления (ТКС), который есть у любого проводника или полупроводника. Он указывает, на какую величину изменяется Ом за каждый градус. В зависимости от материала изготовления ТКС может быть положительным или отрицательным.

Технические характеристики

Сопротивление резистора – формула для рассчета

Каждое устройство обладает набором параметров, на которые нужно обращать внимание при выборе:

  1. Номинальное сопротивление. Это значение, полученное при фиксированной температуре (стандарт – 20 градусов).
  2. ТКС – обратимое изменение сопротивления на каждый градус.
  3. Максимальная мощность рассеяния. Иногда называют просто мощностью резистора. Показывает предельное значение, которое рассеивает ТР без необратимых последствий. Показатель актуален только в условиях соблюдения температурного режима.
  4. Температурная чувствительность. Определяется в определенном диапазоне и зависит от свойств полупроводникового материала.

Эти значения нужно учитывать для приборов с отрицательным температурным коэффициентом сопротивления.

Отрицательный коэффициент ТКС

Дело в том, что зависимость сопротивления от температуры у термисторов экспоненциальная. При этом номинальное сопротивление отдельного ТР может изменяться в больших пределах. Расчеты параметров полупроводниковых приборов сложнее – у позисторов принцип работы основан на линейной зависимости.

Область применения

Использование устройств зависит от их стоимости и точности измерений. Более дорогие позисторы применяют в сложных производствах, а также в качестве предохранителей. Например, их подключают к исполнительному реле, в случае нагрева схема отключается. Термисторы гораздо доступнее, что позволяет находить им широкое применение в быту.

Термистор как регулятор пускового тока

Есть ряд приборов, которые подвержены чрезмерным токам при первом запуске: лампы, двигатели и трансформаторы. Для их ограничения в цепь встраивается термистор. Вместо резких скачков осуществляется регулировка тока по нагрузке, по мере нагревания термистора и уменьшения сопротивления.

Алмаз и родственные материалы – особые терморезисторы

На рынке терморезисторов есть особый класс устройств – на основе монокристаллов алмаза, композитов и углеродных пленок. Они обладают сразу несколькими преимуществами:

  • работоспособность при температурах до 1000 градусов;
  • чрезвычайно высокая устойчивость к агрессивным воздействиям;
  • высокая твердость при низкой инерционности.

У таких приборов есть особая маркировка – ТРА. Выпускают их без корпуса либо в стеклянной оболочке.

Чем можно заменить

Менять терморезистор лучше всего на аналогичный, сверяясь со справочником или технической документацией. Однако при наличии опыта и знаний об устройстве того или иного аппарата можно заменить ТР на обычный проволочный резистор. Следует проверить:

  • условия срабатывания реле – по времени или напряжению;
  • изменение времени выхода на рабочий режим;
  • необходимость последовательного соединения сразу нескольких резисторов.

Важно понимать, какие функции выполнял ТР. В некоторых случаях замена окажется нецелесообразной либо невозможной.

Терморезисторы – необходимый элемент для функционирования современной электротехники. Это точный и эффективный датчик, позволяющий контролировать работу устройств во многих сферах. Его применяют уже более 90 лет, заменить его в ближайшее время удастся с малой вероятностью.

Источник: https://amperof.ru/teoriya/termorezistor.html