Почему греется конденсатор на электродвигателе?

Как работает конденсаторный электродвигатель и для чего он нужен

Почему греется конденсатор на электродвигателе?

В современном оборудовании используется несколько разные виды электродвигателей. Разные по конструкции, характеристиками и принципу работы все эти двигатели подбираются для каждого конкретного случая по своим параметрам. Вместе с тем, довольно часто в приборах и оборудовании необходимы электродвигатели с возможностью подключения к однофазной сети. Одним из подходящих вариантов выступает конденсаторный электродвигатель, устройство и принцип работы которого мы рассмотрим в пределах данной статьи.

Устройство и принцип работы

Говоря о конденсаторных асинхронных двигателях, речь в первую очередь будет идти об электромоторах, изначально рассчитанных для подключения к однофазной сети. Это несколько перекликается с двухфазными или трехфазными двигателями, переделанными для подключения в обычную однофазную сеть на 220 Вольт. Но существенным отличием этих электродвигателей выступает то, что здесь конденсатор выступает как обязательное условие электрической схемы и включение в трёхфазную сеть 380 Вольт такого асинхронного двигателя просто невозможно.

Устройство и принцип работы конденсаторного двигателя основаны на физических свойствах асинхронного двигателя, но для создания движущей силы и вращения магнитного поля в цепь обмоток включен пусковой конденсатор.

По своему устройству он не отличается от обычного асинхронника и в составе имеет:

  1. Неподвижный статор в массивном корпусе с рабочей и пусковой обмотками.
  2. Закрепленный на валу ротор, приводимый в движение силой электромагнитного поля, создаваемого обмотками статора.

Обе части электродвигателя соединены между собой на подшипниках качения или скольжения (втулки), закрепленных в крышках корпуса статора.

По принципу работы конденсаторный электродвигатель, как отмечалось выше, относится к асинхронным – движение осуществляется за счет создания электромагнитного поля обмотками статора, сдвинутыми относительно друг друга на 90 градусов. Единственное отличие от трехфазных асинхронных электродвигателей заключается во включенном в цепь конденсаторе, через который включаются вторая обмотка электродвигателя.

Обычный асинхронный двигатель при включении в сеть начинает работу с пусковой обмоткой. После того как ротор набрал обороты, пусковая обмотка отключается и работу продолжает только рабочая обмотка. Минусом такого электромотора с пусковой обмоткой выступает момент пуска, когда ротор начинает набор оборотов. Для электродвигателя важно чтобы в этот момент не было нагрузки, или нагрузка была небольшой. Пусковой момент получается ниже, чем у аналогичных по мощности трёхфазных моторов.

В схеме подключения конденсаторного асинхронного двигателя есть фазосдвигающий конденсатор. При подключении в сеть через конденсатор во второй обмотке возникает сдвиг фаз, равный 90 градусам (на практике немного меньше). Это способствует тому, что в работу ротор включается с максимально возможным крутящим моментом.

Такой запуск обеспечивает включение двигателя как на холостом ходу, так и под нагрузкой. Это очень важно для подключения двигателя под нагрузкой. На практике по такой схеме подключается мотор от стиральной машины старых моделей. В момент пуска двигатель должен начать вращать воду в баке, а это существенная нагрузка на электродвигатель. При отсутствии пускового конденсатора двигатель не будет запускаться, он будет гудеть, греться, но работать не будет.

Виды конденсаторных двигателей

Схема подключения, при которой конденсаторный асинхронный двигатель запускается только от пускового конденсатора, имеет один существенный минус. Во время работы магнитное поле не остается круговым или эллиптическим, показатели работы падают, а электродвигатель греется. В таком случае для оптимального режима в цепь включается рабочий конденсатор, обеспечивающий постоянный сдвиг фаз, а не только в момент пуска.

Отметим, что можно выделить две группы конденсаторных двигателей:

  1. Конденсатор нужен только для пуска, тогда его называют пусковым. Обычно это маломощные приборы.
  2. Конденсатор нужен для постоянной работы, в этом случае его называют рабочим. В машинах большой мощности (несколько кВт) для пуска под нагрузкой может не хватать момента, и тогда подключают дополнительно еще один пусковой конденсатор. Чаще всего это делают с помощью кнопки ПНВС.

Подробнее со схемой подключения и тем как отличить эти типы однофазных двигателей вы можете ознакомиться в следующем видео ролике:

Читайте также  Почему не работает пьеза на газовой плите?

В международной классификации применяются обозначения для типов конденсаторных асинхронных двигателей:

  • двигатель с пуском через конденсатор/работа через обмотку (индуктивность) (CSIR);
  • двигатель с пуском через конденсатор/работа через конденсатор (CSCR);
  • двигатель с постоянным разделением емкости (PSC).

Как работает такая схема представить несложно: пусковой конденсатор большой емкости обеспечивает пуск двигателя, а после набора мощности рабочий меньшей емкости обеспечивает максимально подходящий режим работы и скорости вращения ротора.

Для особых случаев, когда необходимо поддерживать необходимую скорость вращения ротора при разных нагрузках для рабочих конденсаторов, подбирают разные емкости с возможностью их переключения.

Чтобы изменить направление вращение, иначе говоря, включить реверс, нужно поменять местами концы одной из обмоток. Для этого удобно использовать 6 контактный тумблер.

Как подобрать емкость для пускового конденсатора

Сразу стоит сказать, что на шильдике двигателя обычно указывается ёмкость пускового и рабочего конденсатора (или только рабочего, если пусковой не нужен). При этом указываются точные данные характерные для конкретно этого электродвигателя с его особенностями устройства и работы.

Если шильдик затёрт или отсутствует, то рассчитать ёмкость рабочего и пускового конденсатора для однофазного можно скорее не по формуле, а по мнемоническому правилу:

Сумма рабочего и пускового конденсатора должна составлять 100 мкФ на 1 кВт мощности (70% пусковой и 30% рабочий). Если двигатель 1 кВт, то рабочий конденсатор нужен на 30 мкФ, а пусковой – на 70. А сами конденсаторы должны быть рассчитаны на напряжение больше чем в питающей сети. Обычно выбирают порядка 400 Вольт.

Но в литературе можно встретить и рекомендации о том, что, что ёмкость пускового конденсатора должна быть больше, чем емкость рабочего в 2 раза.

Как проверить работоспособность конденсатора подскажет статья, выложенная на нашем сайте ранее — https://samelectrik.ru/kak-pravilno-proverit-rabotaet-li-kondensator.html

Сфера практического применения

Конденсаторные асинхронные электродвигатели используются в бытовых электровентиляторах, холодильниках, некоторых современных стиральных машинах, практически во всех стиральных машинах производства СССР. Но в вытяжках чаще применяются двигатели с расщепленными полюсами без конденсатора, тем не менее, можно встретить модели и с рассматриваемым типом электродвигателя.

Кроме бытовой техники их сфера применения распространяется и на насосы мощностью до 2-3 кВт, компрессоры и различные станки с однофазным питанием, в общем, на все, что должно вращаться и работать от 220 Вольт.

Вот мы и рассмотрели, что такое конденсаторный двигатель, как он устроен и для чего нужен. Надеемся, предоставленная информация помогла вам разобраться в вопросе!

Материалы по теме:

Источник: https://samelectrik.ru/kondensatornyj-elektrodvigatel.html

Проверка и замена пускового конденсатора

Почему греется конденсатор на электродвигателе?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки — между линией питания и пусковой обмоткой электродвигателя. 

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С  и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В — 10000 часов
  • 450 В —  5000 часов
  • 500 В —  1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Читайте также  Почему выбивают пробки на счетчике?

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором — менее одной секунды, вторым — более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения — термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ=С1+С2+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый. 

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы   этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Источник: https://masterxoloda.ru/1/proverka-i-zamena-puskovogo-i-rabochego-kondensatorov

Почему греется электродвигатель

Почему греется конденсатор на электродвигателе?

Все мы знаем, что механическое движение в электроустройствах разного назначения обеспечивается электродвигателем. Но при длительной работе в режиме повышенных нагрузок они начинают греться, что может привести к перегреву и поломке устройства. Поэтому, перед его эксплуатацией необходимо очень внимательно прочитать инструкцию.
Нередко приходится ремонтировать электроприборы и производить замену в них электродвигателя.

Некоторые умельцы создают собственные электромеханические устройства, в состав которых входит электродвигатель. При монтаже системы водоснабжения также используются насосы, движущей силой, в которых есть электромоторы.

Во время эксплуатации, при замене и установке мотора важно знать, почему происходит его нагревание, как подобрать такое устройство, чтобы увеличить период использования электроприбора в целом и снизить риск его поломки.

Итак, почему греется электродвигатель и как не допустить его перегрева?

Относиться к проблеме нагрева двигателя нужно с особым вниманием, ведь изоляция его обмотки имеет слабое сопротивление повышенным температурам. Зачастую нормой является температура, в пределах 90-95 ºС. Существуют электромоторы обмотка, в которых рассчитана на максимальную температуру в 130 ºС.

Но в любом случае, во время эксплуатации могут возникать аварийные перегрузки или технологические неисправности, которые приводят к нагреву, являющемуся причиной выхода из строя изоляции. После чего зачастую происходит короткое замыкание. В результате, для восстановления работоспособности устройства, потребуется дорогостоящий ремонт двигателя или его полная замена.

Менее затратным будет выяснить причину нагрева электромотора и устранить ее, нежели покупать новый двигатель или заказывать его перемотку.

Зачастую причиной перегрева двигателя является:— неисправность линий электропередач;— повышенные рабочие нагрузки;— износ щеток электромотора;— перекос вала;— плохая смазка и повышенный износ подшипников;

— выход из строя или малоэффективная работа охлаждающего двигатель устройства (вентилятора).

Выяснить причину нагрева мотора можно, если включить его без нагрузки. Но предварительно необходимо изучить паспорт этого прибора, в котором отражена информация о максимальной нагрузке.

В том случае, если она больше фактической, нужно вначале снизить объемы выполняемых агрегатом работ.
О неправильности технологического монтажа свидетельствует идеальная работа двигателя без нагрузки. Но если он без нагрузки греется, то причины кроются внутри этого агрегата.

Многие из них, устранить не составит труда, например, если причиной повышения температуры есть неработающий вентилятор охлаждения. Он может быть плохо смазан или забит пылью, и чтобы восстановить нормальный режим его работы требуется всего лишь смазать или очистить от пыли вентилятор.Независимо от того, что послужило причиной повышения температуры электромотора, эту неисправность необходимо устранить и как можно скорее.

Так как дальнейшая эксплуатация двигателя может привести к более серьезным проблемам, его эксплуатационный ресурс снизится в несколько раз.Чаще всего проблема повышенной температуры электродвигателя решается путем смазки подшипника, стабилизации напряжения в электросети, которая питает тот или иной силовой агрегат, удаление грязи и пыли с поверхностей обмотки. В том случае если не получается произвести выравнивание напряжения в сети необходимо уменьшить нагрузку на мотор.

Читайте также  Почему в розетке две фазы?

При этом нормально функционировать он будет при напряжении, которое меньше номинального не более чем на 20 %. Устранение более сложных причин нагрева осуществляется путем чистки или замены щеток, перемотки двигателя.

В случае если на повышение температуры двигателя влияет нагрев подшипника, то необходимо в первую очередь осуществить его чистку, убедиться в том, что крышки подшипника плотно закрыты. Если подшипник открылся в результате сильной вибрации то, скорее всего в него попала грязь и пыль. Чистка детали производится путем ее промывки керосином, после чего необходимо произвести продув сжатым воздухом.

В завершение восстановления нормальной работоспособности подшипника производится его наполнение чистой смазкой, характеристики которой соответствуют скорости работы электромотора. Добавлять ее нужно небольшими порциями с использованием специальных приспособлений. При этом важно не переборщить с количеством смазки, иначе скольжение будет затруднено, и мотор будет по-прежнему испытывать нагрузку.
Кроме этого, причиной нагрева мотора может быть проблема с питающим напряжением.

Это может быть либо повышенное, либо пониженное напряжение, пропадание или перекос фаз. При такой ситуации, мотор работает в ненормальных условиях, что влечет за собой изменение его электрических характеристик, увеличение тока в обмотках. Поэтому необходимо взять тестер и проверить напряжение в сети, наличие фаз, равномерность напряжения тока на каждой из них. Определенные расхождения могут быть, но если их величина большая, то нужно искать и устранять причину.

В любом случае если было замечено, что температура электродвигателя повышена, а она должна быть меньше 125 градусов по Цельсию, то необходимо выяснять причины. Нужно посмотреть может, увеличилась механическая нагрузка на вале двигателя.

Может, происходит затирание подшипников внутри электромотора. А может двигатель без смазки и работает на сухую. Проверить, не замкнули ли провода в обмотке. Возможно, произошел перекос фаз или напряжение не соответствует норме.

Позволяют ли мощности двигателя работать в этом устройстве. В любом случае если имеет место перегрев мотора, то должна присутствовать одна из вышеперечисленных причин. При этом важно ее своевременно установить и побыстрее устранить, не подвергая двигатель повышенным нагрузкам продолжительный период времени.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

ссылкой:

АрхивыВыберите месяц Февраль 2020  (1) Январь 2020  (2) Декабрь 2019  (4) Ноябрь 2019  (3) Октябрь 2019  (2) Сентябрь 2019  (1) Август 2019  (3) Июль 2019  (5) Июнь 2019  (7) Май 2019  (5) Апрель 2019  (9) Март 2019  (13) Февраль 2019  (11) Январь 2019  (13) Декабрь 2018  (11) Ноябрь 2018  (15) Октябрь 2018  (11) Сентябрь 2018  (5) Август 2018  (8) Июль 2018  (3) Июнь 2018  (6) Май 2018  (3) Апрель 2018  (3) Март 2018  (2) Февраль 2018  (5) Январь 2018  (3) Декабрь 2017  (4) Ноябрь 2017  (6) Октябрь 2017  (6) Сентябрь 2017  (5) Август 2017  (8) Июль 2017  (11) Июнь 2017  (8) Май 2017  (9) Апрель 2017  (9) Март 2017  (5) Февраль 2017  (15) Январь 2017  (11) Декабрь 2016  (13) Ноябрь 2016  (20) Октябрь 2016  (13) Сентябрь 2016  (9) Август 2016  (13) Июль 2016  (9) Июнь 2016  (10) Май 2016  (13) Апрель 2016  (11) Март 2016  (11) Февраль 2016  (1) Январь 2016  (6) Декабрь 2015  (2) Ноябрь 2015  (4) Октябрь 2015  (22) Сентябрь 2015  (9)

Источник: https://elektronchic.ru/elektrotexnika/pochemu-greetsya-elektrodvigatel.html