Пляска проводов причины

Что такое вибрация и пляска проводов, от чего зависят эти явления

Пляска проводов причины
На проводах и грозозащитных тросах высоковольтных линий электропередач возникают различные механические нагрузки и напряжения. Например, при ветре наблюдается такое явление как вибрация или пляска проводов. Что это такое, какие могут быть последствия и методы борьбы вы узнаете из этой статьи.

Определение

Вибрацией проводов называются периодические колебания провода или троса в пролете между опорами ЛЭП. Колебания происходят с частотой от 3 до 150 Гц в вертикальной плоскости под воздействием ламинарного воздушного потока. В результате образуются стоячие волны, двойная амплитуда которых может быть больше диаметра провода или троса, но при этом не превышает 0,005 длины волны.

Пляской называются устойчивые периодические колебания, с большей чем в предыдущем случае амплитудой и меньшей частотой — от 0,2 до 2 Гц. Таким образом образуются стоячие волны амплитудой от 0,3 до 5 метров, а в некоторых случаях и больше.
Явление наблюдается на линиях электропередач, проводах контактной сети и грозозащитных тросах.

К контактной сети также применяется понятие «автоколебания», хотя в сущности это одно и тоже. Еще одно название — Эоловы вибрации.
Так главным отличием вибрации от пляски является частота.

Вибрация едва заметна глазу из-за высокой частоты, меньшей амплитуды и числа полуволн, а пляска — это сильные колебания с большей длиной волны и амплитудой.

Причины возникновения

Вибрация проводов и тросов воздушных ЛЭП возникает при ламинарном потоке воздуха (при ветре скоростью 0.5-7 м/с, при большей скорости поток становится турбулентным), направление которого перпендикулярно или находится под некоторым углом к ним.

Тогда потоки воздуха обтекают цилиндрическую поверхность провода и возникает круговой поток, при этом в верхней его части (на рисунке ниже точка А) скорость этого потока больше чем в нижней (точка В). Происходит это из-за срывов вихрей воздуха с верхней и нижней стороны, в результате чего появляется дисбаланс давлений.
Отсюда возникает не только горизонтальная, но и вертикальная составляющая давления потоков воздуха (ветра). Если частота образования вихрей совпадет с частотой (одной из) собственных колебаний провода, то начнутся его колебания в вертикальной плоскости.

Собственными называются колебания, возникающие в системе при отсутствии переменных внешних воздействий, в результате начального отклонения. Как происходит с гитарной струной.

В определенных точках возникнут пучности волн, в них амплитуда будет максимальной. Те точки, которые будут оставаться неподвижными, называются узлами. В них будут происходить угловые перемещения провода, простым языком – он будет изгибаться и вращаться. Возникают стоячие волны, когда длина волны равна или кратна расстоянию между опорами (длине пролёта).

Частота вибраций прямо пропорциональна скорости ветра и может быть вычислена по формуле:

f=(0,185V)/d,

где f – частота колебаний, V – скорость ветра, d – диаметр, 0,185 – характерное в этом случае число Струхаля.

Из формулы видно и то, что чем тоньше провод, тем с большей частотой он вибрирует. При этом особо опасны скорости ветра 0,6-0,8 м/с, поскольку при скорости ветра больше 5-8 м/с амплитуды малы и не опасны. Как правило, явление возникает в пролётах длиной более 120 метров, при увеличении расстояния только усиливается. Особенно это важно при протяженности пересечения ВЛ более чем 500м, например, через реки и водоёмы.

Отличием пляски от вибрации в первую очередь является амплитуда – она больше и может достигать 12-14 метров, а также большей длинной волны. Характер и траектория движения при пляске повторяет форму вытянутого эллипса, с отклоненной осью на 10-20 градусов от вертикальной линии.

При гололеде (наледях и обледенении линии) диаметр провода увеличивается исходя из формулы, приведенной выше – уменьшается частота колебаний и увеличивается длина волны вибраций.

Гололед появляется не равномерно, а с подветренной стороны. В результате провода и тросы становятся не цилиндрическими, а неправильной формы. При такой форме во время ветра возникает подъёмная сила, на рисунке ниже Vy.

Она и вызывает пляску. Слева изображены волны пляски в пролёте между опорами, а с права – обледеневший трос и огибающий его воздушный поток.

Пляска возникает при большей скорости ветра, чем вибрации, а именно 5-20 м/с, под углом к линии в 30-70 градусов. Колебания происходят с меньшей частотой и большей амплитудой.

Внешние отличия явлений этих двух явлений вы можете увидеть на сравнив следующие два видео:

Опасность

Давайте разберемся чем опасна пляска и вибрация на ВЛЭП. Пляска опасна тем, что провода колеблются не синхронно, а амплитуда может достичь такой величины, что может произойти перехлест с тросом грозозащиты, или между собой. Из-за чего происходят электрические разряды, со всеми вытекающими последствиями. Для предотвращения схлестываний в некоторых случаях устанавливаются изолирующие распорки между проводящими частями линий.

Вибрация в свою очередь несёт разрушающие воздействия на жилы проводников, также возможны обрывы линии на соединениях и зажимах или выходах из зажимов.

Методы борьбы

Поскольку опасность вибрации и пляски заключается в выходе из строя ВЛ, обрывах и замыканиях, мы рассмотрим основной метод защиты от неё.

Установка виброгасителей является основным методом устранения рассмотренных явлений. Они бывают различных типов. Общей чертой является то, что выполнены в виде стержня с грузилами на концах, который подвешивается за среднюю часть на тросах и проводах. Тип виброгасителя подбирается в соответствии с длиной пролёта и диаметром проводника, согласно таблице 2.5.9. ПУЭ, п. 2.5.85 (Глава 2.5 ПУЭ).

Читайте также  Как правильно обжать провод для интернета?

Источник: https://samelectrik.ru/vibraciya-i-plyaska-provodov.html

Пляска проводов причины — Все об электричестве

Пляска проводов причины

«Старые провода мы сейчас хотим заменить на провода новой конструкции, которую разрабатываем, — говорит представитель ПАО «Россети». — Это тоже сталь-алюминиевые провода, но проволока там применяется не круглого сечения, а скорее трапециевидного. Повив получается плотным, а поверхность провода гладкая, без щелей.

Влага внутрь попасть почти не может, смазка не вымывается, сердечник не ржавеет, и срок службы такого провода приближается к тридцати годам. Провода схожей конструкции уже используются в таких странах, как Финляндия и Австрия. Линии с новыми проводами есть и в России — в Калужской области. Это линия «Орбита-Спутник» длиной 37 км. Причем там провода имеют не просто гладкую поверхность, но и другой сердечник.

Он выполнен не из стали, а из стекловолокна. Такой провод легче, но прочнее на разрыв, чем обычный сталь-алюминиевый».

Однако самым последним конструкторским достижением в данной области можно считать провод, созданный американским концерном 3M. В этих проводах несущая способность обеспечивается только токопроводящими повивами. Там нет сердечника, но сами повивы армированы оксидом алюминия, чем достигается высокая прочность.

У этого провода прекрасная несущая способность, и при стандартных опорах он за счет своей прочности и малого веса может выдерживать пролеты длиной до 700 м (стандарт 250−300 м). Кроме того, провод очень стоек к тепловым нагрузкам, что обусловливает его использование в южных штатах США и, например, в Италии.

Однако у провода от 3M есть один существенный минус — слишком высокая цена.

Оригинальные «дизайнерские» опоры служат несомненным украшением ландшафта, однако вряд ли они получат широкое распространение. В приоритете у электросетевых компаний надежность передачи энергии, а не дорогостоящие «скульптуры».

Лед и струны

У воздушных линий электропередач есть свои естественные враги. Один из них — обледенение проводов. Особенно это бедствие характерно для южных районов России. При температуре около нуля капли измороси падают на провод и замерзают на нем. Происходит образование кристаллической шапки на верхней части провода. Но это только начало.

Шапка под своей тяжестью постепенно проворачивает провод, подставляя замерзающей влаге другую сторону. Рано или поздно вокруг провода образуется ледяная муфта, и если вес муфты превысит 200 кг на метр, провод оборвется и кто-то останется без света. В компании «Россети» есть свое ноу-хау по борьбе со льдом.

Участок линии с обледеневшими проводами отключается от линии, но подключается к источнику постоянного тока. При использовании постоянного тока омическое сопротивление провода можно практически не учитывать и пропускать токи, скажем, в два раза сильнее, чем расчетное значение для переменного тока. Провод нагревается, и лед плавится. Провода сбрасывают ненужный груз.

Но если на проводах есть ремонтные муфты, то возникает дополнительное сопротивление, и вот тогда провод может и перегореть.

Другой враг — высокочастотные и низкочастотные колебания. Натянутый провод воздушной линии — это струна, которая под воздействием ветра начинает вибрировать с высокой частотой.

Если эта частота совпадет с собственной частотой провода и произойдет совмещение амплитуд, провод может порваться. Чтобы справиться с данной проблемой, на линиях устанавливают специальные устройства — гасители вибрации, имеющие вид тросика с двумя грузиками.

Эта конструкция, имеющая свою частоту колебаний, расстраивает амплитуды и гасит вибрацию.

С низкочастотными колебаниями связан такой вредный эффект, как «пляска проводов». Когда на линии происходит обрыв (например, из-за образовавшегося льда), возникают колебания проводов, которые идут волной дальше, через несколько пролетов. В результате могут погнуться или даже упасть пять-семь опор, составляющих анкерный пролет (расстояние между двумя опорами с жестким креплением провода).

Известное средство борьбы с «пляской» — установление межфазных распорок между соседними проводами. При наличии распорки провода будут взаимно гасить свои колебания. Другой вариант — использование на линии опор из композитных материалов, в частности из стеклопластика. В отличие от металлических опор, композитная имеет свойство упругой деформации и легко «отыграет» колебания проводов, нагнувшись, а затем восстановив вертикальное положение.

Такая опора может предотвратить каскадное падение целого участка линии.

На фото отчетливо видна разница между традиционным высоковольтным проводом и проводом новой конструкции. Вместо проволоки круглого сечения использована предварительно деформированная проволока, а место стального сердечника занял сердечник из композита.

Опоры-уникумы

Разумеется, существуют разного рода уникальные случаи, связанные с прокладкой воздушных линий. Например, при установке опор в обводненный грунт или в условиях вечной мерзлоты обычные сваи-оболочки для фундамента не подойдут. Тогда используются винтовые сваи, которые ввинчивают в грунт как шуруп, чтобы достичь максимально прочного основания.

Особый случай — это прохождение ЛЭП широких водных преград. Там используются специальные высотные опоры, которые весят раз в десять больше обычных и имеют высоту 250−270 м. Поскольку длина пролета может составлять более двух километров, применяется особый провод с усиленным сердечником, который дополнительно поддерживается грузотросом.

Так устроен, например, переход ЛЭП через Каму с длиной пролета 2250 м.

Источник: https://www.PopMech.ru/technologies/214841-kak-ustroeny-opory-lep/

Вибрация и пляска проводов на воздушных линиях электропередачи

Разместить публикацию Мои публикации Написать

Вибрация проводов

При обтекании проводов потоком воздуха, направленным поперек оси линии или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. Периодически происходят отрывы ветра от провода и образование вихрей противоположного направления.

Отрыв вихря в нижней части вызывает появление кругового потока с подветренной стороны, причем скорость потока v в точке А становится больше, чем в точке В. В результате появляется вертикальная составляющая давления ветра.

При совпадении частоты образования вихрей с одной из частот собственных колебании натянутого провода последний начинает колебаться в вертикальной плоскости. При этом одни точки больше всего отклоняются от положения равновесия, образуя пучность волны, а другие — остаются на месте, образуя так называемые узлы.

Вибрация проводов возникает при скоростях ветра 0,6—0,8 м/с; при увеличении скорости ветра увеличиваются частота вибрации и число волн в пролете, при скорости ветра свыше 5—8 м/с амплитуды вибрации настолько малы, что не опасны для провода.

Опыт эксплуатации показывает, что вибрация проводов наблюдается чаще всего на линиях, проходящих по открытой и ровной местности. На участках линий в лесной и пересеченной местности продолжительность и интенсивность вибраций значительно меньше. Вибрация проводов наблюдается, как правило, в пролетах длиной более 120 м и усиливается с увеличением пролетов. Особенно опасна вибрация на переходах через реки и водные пространства с пролетами длиной более 500 м.

На основании наблюдений и исследований установлено, что опасность разрушения проводов зависит от так называемого средне-эксплуатационного напряжения (напряжения при среднегодовой температуре и отсутствии дополнительных нагрузок).

Читайте также  Изоляция проводов термоусадкой

Методы борьбы с вибрацией проводов

Согласно ПУЭ одиночные алюминиевые и сталеалюминиевые провода сечением до 95 мм2 в пролетах длиной более 80 м, сечением 120 — 240 мм2 в пролетах более 100 м, сечением 300 мм2 и более в пролетах более 120 м, стальные провода и тросы всех сечений в пролетах более 120 м должны быть защищены от вибрации, если напряжение при среднегодовой температуре превышает: 3,5 даН/мм2 (кгс/мм2) в алюминиевых проводах, 4,0 даН/мм2 в сталеалюминиевых проводах, 18,0 даН/мм2 в стальных проводах и тросах.

В пролетах меньше указанных выше защита от вибрации не требуется. Защита от вибрации не нужна также на линиях с расщеплением фазы на два провода, если напряжение при среднегодовой температуре не превышает 4,0 даН/мм2 в алюминиевых и, 4,5 даН/мм2 в сталеалюминиевых проводах.

Фаза с расщеплением на три и четыре провода, как правило, не требует защиты от вибрации. Участки любых линий, защищенные от поперечных ветров, не подлежат защите от вибрации. На больших переходах рек и водных пространств защита необходима независимо от напряжения в проводах.

Как правило, снижение напряжений в проводах линий до значений, при которых не требуется защиты от вибрации, экономически невыгодно. Поэтому на линиях напряжением 35 — 330 кВ обычно устанавливаются виброгасители, выполненные в виде двух грузов, подвешенных на стальном тросе.

Виброгасители поглощают энергию вибрирующих проводов и уменьшают амплитуду вибрации около зажимов. Виброгасители должны быть установлены на определенных расстояниях от зажимов, определяемых в зависимости от марки и напряжения провода.

На ряде линий для защиты от вибрации применяются армирующие прутки, выполненные из того же материала, что и провод, и наматываемые на провод в месте его закрепления в зажиме на длине 1,5 — 3,0 м. Диаметр прутков уменьшается в обе стороны от середины зажима. Армирующие прутки увеличивают жесткость провода и уменьшают вероятность его повреждения от вибрации. Однако наиболее эффективным средством борьбы с вибрацией являются виброгасители.

Для защиты от вибрации одиночных сталеалюминиевых проводов сечением 25—70 мм2 и алюминиевых сечением до 95 мм2 рекомендуются гасители петлевого типа (демпфирующие петли), подвешиваемые под проводом (под поддерживающим зажимом) в виде петли длиной 1,0—1,35 м из провода того же сечения. В зарубежной практике петлевые гасители из одной или нескольких последовательных петель применяются также для защиты проводов больших сечений, в том числе и проводов на больших переходах.

Пляска проводов

Пляска проводов, так же как и вибрация, возбуждается ветром, но отличается от вибрации большой амплитудой, достигающей 12 — 14 м, и большой длиной волны. На линиях с одиночными проводами чаще всего наблюдается пляска с одной волной, т. е. с двумя полуволнами в пролете (рис. 4), на линиях с расщепленными проводами — с одной полуволной в пролете.

В плоскости, перпендикулярной оси линии, провод движется при пляске по вытянутому эллипсу, большая ось которого вертикальна или отклонена под небольшим углом (до 10 — 20°) от вертикали. Диаметры эллипса зависят от стрелы провеса: при пляске с одной полуволной в пролете большой диаметр эллипса может достигать 60 — 90% стрелы провеса, при пляске с двумя полуволнами — 30 — 45% стрелы провеса.

Малый диаметр эллипса обычно составляет 10 — 50% длины большого диаметра.

Как правило, пляска проводов наблюдается при гололеде. Гололед отлагается на проводах преимущественно с подветренной стороны, вследствие чего провод получает неправильную форму. При воздействии ветра на провод с односторонним гололедом скорость воздушного потока в верхней части увеличивается, а давление уменьшается. В результате возникает подъемная сила Vy, вызывающая пляску провода.

Опасность пляски заключается в том, что колебания проводов отдельных фаз, а также проводов и тросов происходят несинхронно; часто наблюдаются случаи, когда провода перемещаются в противоположных направлениях и сближаются или даже схлестываются. При этом происходят электрические разряды, вызывающие оплавление отдельных проволок, а иногда и обрывы проводов. Наблюдались также случаи, когда провода линий 500 кВ поднимались до уровня тросов и схлестывались с ними.

Удовлетворительные результаты эксплуатации опытных линий с гасителями пляски пока недостаточны для уменьшения расстояний между проводами.

Источник: https://contur-sb.com/plyaska-provodov-prichiny/

Вибрация и пляска проводов на воздушных линиях электропередачи

Пляска проводов причины

Для передачи электрического тока на большие расстояния используются воздушные и кабельные линии высокого напряжения. Протяженность таких линий электропередач может достигать нескольких километров, на которых установлены высоковольтные опоры для отделения проводов от земли.

В местах крепления обеспечивается достаточно жесткая фиксация, но в пролетах опор провода могут свободно колебаться.

При воздействии определенных внешних факторов на воздушных линиях  возникает вибрация и пляска проводов, способная как повредить сами устройства, так и нарушить нормальный режим работы энергосистемы.

Возникновение вибрации и пляски от воздушного потока

Воздействие ветра происходит при любом направлении потока, как в горизонтальной плоскости, так и под каким-то углом. Основной причиной колебаний является неравномерная скорость, с которой воздух огибает провод, из-за чего в верхней и нижней точке возникает разность давления.

Рис. 2: воздействие воздуха на провод

Посмотрите на рисунок 2, здесь приведен пример, когда воздух огибает окружность из точки А в точку Б.  Воздушный поток в этом месте закручивается, и возникают завихрения. Это приводит к возникновению сил, давящих не только со стороны ветра, но и в вертикальной плоскости. В нижней точке давление становится меньшим, чем в верхней и при совпадении вихрей с собственными колебаниями возникают горизонтальные перемещения провода.

Следует отметить, что такая ситуация возможна лишь при относительно небольших скоростях воздушных потоков – от 0,5 до 7м/с, так как при увеличении скорости потоки движутся иначе. Но прекращение ветра, увы, не означает окончание вибрации, так как из-за большой протяженности линий в них возникают собственные колебания, которые уже не требуют поддержания, а продолжаются за счет резонансных явлений.  И, если вибрация носит незаметный характер, то при пляске, волны станут куда более значительными и опасными.

Читайте также  Как соединить три провода между собой?

Физика процесса

Во время пляски в местах подвешивания к опоре линия крепится жестко, поэтому в таких узлах не возникает никаких колебаний. А в местах провеса проводов амплитуда колебаний становиться максимальной.

Рис. 3: функция колебания проводов в пролете

При достижении максимума пляски в пиковой точке провиса возникает, так называемая, стоячая волна. Данное явление характеризуется величиной амплитуды кратной или равной длине пролета. Наиболее опасные перемещения возникают на скоростях в 0,6 – 0,8 м/с, а при нарастании скорости воздушного потока более 5 – 8 м/с динамические нагрузки слишком малы из-за незначительной амплитуды.

Но, помимо амплитуды вибрации вторым по значимости параметром является их частота, которую можно определить по формуле:

f = (0,185×V)/d, где

  • f – это частота колебаний;
  • 0,185 – постоянная Струхаля;
  • V – скорость аэродинамического потока;
  •  d – диаметр провода.

Как видите из формулы, чем меньшего сечения торсы применяются в ЛЭП, тем с большей частотой они будут колебаться. На практике,  частота колебаний обуславливает и интенсивность пляски, из-за чего диапазон наиболее опасных частот для линии составляет от 0,2 до 2 Гц.

Следует отметить, что ситуация может значительно ухудшаться за счет погодных факторов, которые влияют не только на воздушные потоки, но и на состояние провода. Наиболее значимым из них является гололед, так как он возникает с подветренной стороны и характеризуется искажением формы провода. При этом вибрирующие провода подвергаются воздействию поднимающей силы Vy, приложенной к отложениям гололеда. Она дополнительно усугубляет ситуацию при вибрации и пляске.

Рис. 4: влияние гололеда на колебания

Провод совершает не только горизонтальные колебания, но и вращательные движения, а в узлах и точках фиксации из-за обледенения происходит повреждение металла.

Демпфирующие распорки DERVAUX — эффективное средство гашения колебаний, вибрации и предупреждения пляски проводов

Пляска проводов причины

Провода воздушных линий электропередачи (ВЛ) независимо от класса напряжения в той или иной степени подвержены колебаниям, вызываемым действием ветра. Вибрация и колебания являются причиной повреждения проводов, линейной арматуры, систем подвески, а пляска проводов приводит также к разрушениям опор.

Колебания и вибрации проводов СИП-3

Важным является тот факт, что на ВЛ с расщепленной фазой, в отличие от ВЛ с одиночным проводом, при одинаковых условиях эксплуатации, пляска возникает гораздо чаще.

Применяемая система защиты от вибраций и cубколебаний в значительной мере влияет на продолжение срока службы проводов и эксплуатационную надежность ВЛ в целом. Эффективным решением проблемы гашения колебаний и вибрации проводов в субпролетах является применение демпфирующих внутрифазных распорок.

  Это может быть объяснено тем, что  при установке глухих распорок, широко применяемых сегодня, расщепленная фаза ВЛ приобретает свойства «жесткой системы», которая подвержена различным колебаниям проводов, являющихся одним из факторов, провоцирующим появление пляски проводов.

Установка демпфирующих распорок DERVAUX приводит к  непрерывному  перераспределению колебаний проводов вдоль пролета ВЛ, что вовлекает другие распорки в процесс демпфирования и способствует рассеиванию колебаний, их гашению в других демпфирующих распорках и многочастотных гасителях вибрации.

С целью повышения эффективности гашения вибраций и субколебаний на высоковольтных ВЛ компанией DERVAUX разработан новый тип распорок, обладающих-демпфирующими свойствами. Распорки данного типа имеют количество лучей по числу проводов расщепленной фазы ВЛ и обеспечивают сохранение требуемого расстояния между проводами в фазе, осуществляют гашение вибрации и различных видов колебаний, предупреждают возникновение пляски проводов.

Особенностью конструкции таких распорок является то, что лучи демпфирующей распорки шарнирно соединены с корпусом через демпферный узел (эластомерный вкладыш), что обеспечивает подвижность конструкции распорки и эластичность движения ее лучей относительно корпуса распорки. Это свойство позволяет распорке реагировать на колебания и движения проводов во всех плоскостях,  а также на крутильные колебания без повреждения проводов или распорок. Движение распорки: продольное L = +/– 50 мм; вертикальное  V = +/– 50 мм; горизонтальное  Н =  +/– 50 мм; коническое С = +/– 150.

Установка демпфирующих распорок приводит к  непрерывному  перераспределению колебаний проводов вдоль пролета ВЛ, вовлекает другие распорки в процесс демпфирования и снижает, таким образом, концентрацию энергии колебания в отдельных субпролетах ВЛ. Другим преимуществом демпфирующих распорок является уменьшение крутильной жесткости проводов и обеспечение их подвижности относительно корпуса распорки, что снижает жесткость системы расщепленной фазы.

Перераспределение колебаний проводов вдоль пролета ВЛ, уменьшение крутильной жесткости проводов, обеспечение подвижности проводов в расщепленной фазе относительно распорки и гашение крутильных колебаний в субпролетах ВЛ, за счет применения демпфирующих распорок, увеличивает эффективность гашения вибрации и колебаний на ВЛ, а также служит средством предупреждения появления пляски проводов.

Последнее слово, видимо, разбередило в душе миссис Корк свежую боль.

Если бы я не получал отдыха в виде периодической дневной дремоты, я полагаю.

Сейчас, когда он шел по безлюдным улицам Детройта, в нем закипала злость оттого, что из-за какой-то горстки негодяев один из «The Dumas Club» крупнейших городов Штатов вынужден терпеть такое унижение.

Спасибо, и она повесила трубку.

Через некоторое время вдали показалась деревня.

Наконец-то он смог вдохнуть полной грудью, но воздух был наполовину перемешан с дымом, и он закашлялся.

Кадры, на которых чету Зиффель расстреливают, пока они наряжают Рождественскую елку, «Анатомия человека» обошли все пятьдесят пять штатов.

С пяти лет привыкшая появляться перед публикой, она испытывала оргазм только тогда, когда рисовала в своем воображении, как ее насилует золотой Оскар под восторженные вопли кинокритиков, прославляющих ее актерское мастерство.

Последняя проверка готовой продукции.

Такое убежище могло быть только временным; нам все равно пришлось бы его покинуть, и тогда было бы так же трудно выехать из этих краев, как и сейчас.

Теперь мы не можем уйти отсюда, продолжал Чиун.

Поднявшись за рекордное время на возвышение, где пел хор, я остановился в арке входа, чтобы оценить ситуацию.

Источник: https://sicame.com.ua/34-dempfiruyushchie-rasporki-dervaux-effektivnoe-sredstvo-gasheniya-kolebanij-vibratsii-i-preduprezhdeniya-plyaski-provodov.html