Каково назначение преобразователя электрической энергии

Содержание

Первичные преобразователи. Датчики

Каково назначение преобразователя электрической энергии

Первичные приборы, датчики или первичные преобразователи предназначены длянепосредственного преобразования измеряемой величины в другую величину, удобную для измерения илииспользования. Выходными сигналами первичных приборов, датчиков являются как правилоунифицированные стандартизованные сигналы, в противном случае используются нормирующие преобразователи (см. рис.1).

Различают генераторные, параметрические и механические преобразователи:

  1. Генераторные осуществляют преобразование различных видов энергии в электрическую, то есть они генерируют электрическую энергию (термоэлектрические, пьезоэлектрические, электрикинетические, гальванические и др. датчики).
  2. К параметрическим относятся реостатные, тензодатчики, термосопротивления и т.п. Данным приборам для работы необходим источник энергии.
  3. Выходным сигналом механических первичных преобразователей (мембранных, манометров, дифманометров, ротаметров и др.) является усилие, развиваемое чувствительным элементом под действием измеряемой величины.

Рисунок 1 — Основные структурные схемы подключения первичных преобразователей

Пояснения к рисунку 1. Первичный преобразователь, датчик Д может иметь выходнойунифицированный сигнал см.рис.1.8.а и неунифицированный сигнал см.рис.1.8.б. Во втором случаеиспользуют нормирующие преобразователи НП.

Нормирующий преобразователь НП выполняет следующие функции: преобразует нестандартныйнеунифицированный сигнал (например, mV, Ом) в стандартный унифицированный выходной сигнал;осуществляет фильтрацию входного сигнала; осуществляет линеаризацию статической характеристикидатчика; применительно к термопаре, осуществляет температурную компенсацию холодного спая.

Нормирующий преобразователь НП применяется, также в следующих случаях: когда необходимоподать сигнал измеряемой величины на несколько измерительных или регулирующих приборов; а такжекогда необходимо передать сигнал на большие расстояния, например сигнал от термопары передается намалые расстояния — до 10м, а унифицированный сигнал постоянного тока может передаваться на большиерасстояния — до 100м.В современных промышленных регуляторах нормирующий преобразователь НП как правилоявляется обязательной составной частью входного устройства регулятора.

Первичные преобразователи для измерения температуры:

По термодинамическим свойствам, используемым для измерения температуры, можно выделитьследующие типы термометров:

  • термометры расширения, основанные на свойстве температурного расширения жидких и твердых тел;
  • термометры газовые и жидкостные манометрические;
  • термометры конденсационные;
  • электрические термометры (термопары);
  • термометры сопротивления;
  • оптические монохроматические пирометры;
  • оптические цветовые пирометры;
  • радиационные пирометры.

Первичные преобразователи для измерения давления:

По принципу действия:

  • жидкостные (основанные на уравновешивании давления столбом жидкости);
  • поршневые (измеряемое давление уравновешивается внешней силой, действующей на поршень);
  • пружинные (давление измеряется по величине деформации упругого элемента);
  • электрические (основанные на преобразовании давления в какую-либо электрическую величину).

По роду измеряемой величины:

  • манометры (измерение избыточного давления);
  • вакуумметры (измерение давления разряжения);
  • мановакуумметры (измерение как избыточного давления, так и давления разряжения);
  • напорометры (для измерения малых избыточных давлений);
  • тягомеры (для измерения малых давлений, разряжений, перепадов давлений);
  • тягонапорометры;
  • дифманометры (для измерения разности или перепада давлений);
  • барометры (для измерения барометрического давления).

Первичные преобразователи для измерения расхода пара, газа и жидкости:

Приборы, измеряющие расход, называются расходомерами. Эти приборы могут быть снабженысчетчиками (интеграторами), тогда они называются расходомерами-счетчиками. Такие приборы позволяютизмерять расход и количество вещества.

Классификация преобразователей для измерения расхода пара, газа и жидкости:

  • Механические: Объемные: ковшовые, барабанного типа, мерники. Скоростные: по методу переменного или постоянного перепада давления, напорные трубки, ротационные.
  • Электрические: электромагнитные, ультразвуковые, радиоактивные.

Первичные преобразователи для измерения уровня:

Под измерением уровня понимается индикация положения раздела двух сред различной плотностиотносительно какой-либо горизонтальной поверхности, принятой за начало отсчета. Приборы, выполняющиеэту задачу, называются уровнемерами.Методы измерения уровня: поплавковый, буйковый, гидростатический, электрический и др.

Источник: https://automation-system.ru/main/65-regulyator/regulation-systems/15-50-pervichnye-preobrazovateli-datchiki.html

Преобразователи напряжения. Виды и устройство. Работа

Каково назначение преобразователя электрической энергии

Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.

Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.

Читайте также  Отопление дачного дома электричеством и дровами

Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Общими для указанных видов преобразователей являются пять элементов:

  • Ключевой коммутирующий элемент.
  • Источник питания.
  • Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  • Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
  • Блокировочный диод.

Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.

Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.

Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение другого значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике.

Устройство трансформатора включает следующие элементы:

  • Магнитопровод.
  • Первичная и вторичная обмотка.
  • Каркас для обмоток.
  • Изоляция.
  • Система охлаждения.
  • Другие элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).

Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.

Существуют и другие виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.

Принцип действия

Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.

Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное

  • Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
  • Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
  • В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
  • Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
  • Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
  • В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.

Виды

Преобразователи можно классифицировать по ряду направлений.

Преобразователи напряжения постоянного тока:

  • Регуляторы напряжения.
  • Преобразователи уровня напряжения.
  • Линейный стабилизатор напряжения.

Преобразователи переменного тока в постоянный:

  • Импульсные стабилизаторы напряжения.
  • Блоки питания.
  • Выпрямители.

Преобразователи переменного напряжения:

  • Трансформаторы переменной частоты.
  • Преобразователи частоты и формы напряжения.
  • Регуляторы напряжения.
  • Преобразователи напряжения.
  • Трансформаторы разного рода.

Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:

  • На пьезоэлектрических трансформаторах.
  • Автогенераторные.
  • Трансформаторные с импульсным возбуждением.
  • Импульсные источники питания.
  • Импульсные преобразователи.
  • Мультиплексорные.
  • С коммутируемыми конденсаторами.
  • Бестрансформаторные конденсаторные.

Особенности

  • При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
  • Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
  • По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.

Применение

  • Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6—24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
  • Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
  • Для питания различных цепей;

— автоматики в телемеханике, устройств связи, электробытовых приборов;
— радио- и телевизионной аппаратуры.

Читайте также  Технические условия на подключение к электрическим сетям

Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.

  • Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
  • Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.

К достоинствам преобразователей напряжения можно отнести:

  • Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
  • Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
  • Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
  • Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
  • Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
  • Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
  • Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.

К недостаткам преобразователей напряжения можно отнести:

  • Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
  • Занимают некоторое место.
  • Сравнительно высокая цена.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrooborudovanie/jelektropitanie/preobrazovateli-napriazheniia/

Каково назначение преобразователя электрической энергии — Все об электричестве

Каково назначение преобразователя электрической энергии

Преобразователь напряжения – устройство, изменяющее вольтаж цепи. В литературе зарубежной подразумевается: речь касается цепей переменного напряжения, в противном случае устройство называют преобразователем постоянного тока. Последние рассматриваются полноценными членами семейства.

Назначение преобразователей напряжения

Необходимость использования устройств подобного рода возникает, когда требуется электрический прибор внедрить в регионе, где стандарты промышленных сетей снабжения энергией отличаются от заложенных разработчиками изделия. Частоты и амплитуда напряжения США противопоставлены Европе, России. Видим ряд причин.

Тесла заметил: при увеличении частоты возможно драматически снизить вес медной обмотки трансформатора, при достижении параметром значения 700 Гц электричество становится в большой мере безопасным для человеческого организма.

Параллельно растут потери сердечников, начинается излучение электромагнитной волны в пространство.

Преобразователь вольтажа

Оценив весомость аргументов, США под влиянием Николы Тесла узаконили частоту 60 Гц. В России (Европе) приняли к сведению доводы прославленного инженера Доливо-Добровольского (обосновал выгодность использования трехфазных сетей). На протяжении Евразии стали эталоном де-факто 50 Гц. Амплитуды напряжения выбирали удобную.

220 вольт опасны для человека, потребитель одновременно затрачивает меньший ток. Сечение медных проводников допустимо ощутимо снизить. Американские 110 вольт переменного тока нельзя считать безопасными полностью.

Люди осведомлены, наученные боевиками, не раз главный герой уничтожал врага электрическим разрядом местной энергосети.

Влияние параметров на технику описываются просто:

  1. Частота оборотов двигателя определена амплитудой приложенного напряжения. Скорость вращения вала асинхронного двигателя с короткозамкнутым ротором напрямую зависит от частоты питающей сети.
  2. Нагревательные приборы рассчитаны на рабочий ток, пропорциональный величине напряжения. Сопротивление преимущественно активное. Мощность изменяется вчетверо (ток берется в квадрате) при аналогичном варьировании между сетями 110/220 вольт. Потребитель ожидает от изделия номинальных параметров, прибор может быть не рассчитан на нестандартную эксплуатацию.
  3. Бытовая техника в составе часто использует напряжения отличные от сетевых со строго определенной амплитудой. Обеспечиваются условия блоком питания. Для нормальной работы требуется преобразователь напряжения.

Зачем мировой практике разные напряжения

Электрификация в массовом порядке велась с начала XX века. Участвовало великое количество людей, каждый преследовал, помимо объективных, собственные интересы. Эдисон продвигал постоянное напряжение, Тесла назло – переменное. Доливо-Добровольский имел основания недолюбливать второго ученого (конфликт интересов в сфере трёхфазных сетей), возможно, частоту 50 Гц ввел наперекор США, Европа прислушалась к мнению более близкого той окрестности инженера.

Что касается СССР, нет сомнений: вольтаж на 220 вольт оставлен только из военных, стратегических соображений противостояния в холодной войне. Диаметр сигареты соответствовал калибру патрона для скорейшего перевода оборудования на выпуск специфической продукции.

Местоположение преобразователей напряжения в общей классификации

С позволения авторов Википедии приведем классификацию преобразователей электроэнергии различного рода, чтобы читатели понимали, где расположился объект сегодняшней беседы:

  1. Преобразователи уровня напряжения (обсуждался выше).
  2. Регуляторы напряжения.
  3. Линейный стабилизатор напряжения.
Читайте также  Ремонт автонасоса электрического

Базовый регулятор линейного напряжения

  • Переменный ток в постоянный:
  1. Выпрямители.
  2. Блоки питания.
  3. Импульсные стабилизаторы напряжения.
  • Постоянный ток в переменный:
  1. Трансформаторы различного рода.
  2. Преобразователи напряжения.
  3. Регуляторы напряжения.
  4. Преобразователи формы и частоты напряжения.
  5. Трансформаторы переменной частоты.

Преобразователи напряжения образуют еще два класса. Блоки питания в первую очередь. Каждый содержит в своём составе преобразователь напряжения. Трансформатор. Преобразователи уровня подходят под отечественное определение предмета беседы, выделяются в отдельный класс. Вопрос ставится книгой М.А. Шустова по рассматриваемой теме.

Классификация преобразователей напряжения

Проведём первичную классификацию преобразователей напряжения:

  • В первую очередь, блоки питания аппаратуры. Уверены, читателям близкими покажутся системные блоки персональных компьютеров. Заглянем внутрь. Импульсный блок питания персонального компьютера содержит трансформатор с множеством обмоток, каждая работает на один номинал. Из переменного напряжения 230 (или 110) вольт получается ряд постоянных: +5, -5, +12, -12. Но! Последующим выпрямлением переменного тока диодами Шоттки.Переключатель напряжения встроен в блок питания
  • Во вторую очередь, адаптеры для локализации оборудования. В большей части бытовой техники опция считается встроенной в блок питания (см. фото). Достаточно переключить тумблер на задней стенке системного блока, изменяя условия работы. Будьте бдительны, избегайте неправильных настроек напряжения, дабы не вывести оборудование из строя.
  • Адаптеры сотовых телефонов, гаджетов нельзя в полной мере назвать преобразователями напряжениями. Скорее модули, включающие предмет сегодняшней темы в свой состав.

Используя обычные трансформаторы или автотрансформаторы для преобразования амплитуды напряжения, помним о частоте. Многие двигатели, сконструированные для работы на 60 Гц, будут перегреваться сетями 50 Гц, пусть амплитуда напряжения соответствует заданной. Что касается встроенных опций блоков питания, далеко не всегда присутствует возможность переключить настройки.

Изделие способно маркироваться наклейкой (помимо заводского шильдика), доступно поясняющей условия работы прибора, согласно предназначению. Что касается расхождений между Европой и Россией (230 — 220 = 10 вольт), указанное несоответствие не сильно влияет на работу (есть негативные моменты).

Отмечали в предыдущих топиках влияние параметра на срок службы лампочек накала, электронных ламп.

Маркировка наклейкой

В соответствии с конструкцией в электронике преобразователи напряжения делят так:

  1. Бестрансформаторные конденсаторные.
  2. С коммутируемыми конденсаторами.
  3. Мультиплексорные.
  4. Импульсные преобразователи.
  5. Импульсные источники питания.
  6. Трансформаторные с импульсным возбуждением.
  7. Автогенераторные.
  8. На пьезоэлектрических трансформаторах.

Конструкция преобразователей напряжения

С ростом частоты увеличиваются потери, вызванные вихревыми токами, в сердечниках трансформаторов. Явление пытаются пресечь путем шихтования. Сердечник разделяется на пластины, с плоскостью параллельной линиям магнитного поля. Используется особая электротехническая сталь с высоким удельным сопротивлением.

По мере роста частоты магнитный поток вытесняется толщей сердечника наружу. Ферромагнитные материалы применяют для увеличения индуктивности. На высоких частотах становится нецелесообразным по указанной выше причине.

Магнитная проницаемость перестает расти, нет смысла изготавливать подобный сердечник. На ВЧ широко используются магнитодиэлектрики прессованным порошком. Устраняя потери, созданные вихревыми токами. Сила магнитного потока сильно снижается.

Периодичность законов изменения тока, напряжения диктует следующее правило…

Энергия, запасенная преобразователем за период, пропорциональна квадрату емкости или индуктивности системы.

В устройствах используют накопители индуктивного или емкостного типа. Это объясняет применение ферромагнитных материалов блоками питания, объясняет, почему Тесла в опытах шел иным путем. Ученый для создания токов высокой частоты использовал колебательные контуры. Аналогичным путем сегодня движется техника преобразователей напряжения. Для постоянного тока конструкция выглядит такова:

  1. Входное напряжение становится одновременно питающим.
  2. Сердцем преобразователя выступает генератор переменного напряжения. Известный мультивибратор (триггер на двух транзисторах), изображение доступно повсеместно. Иногда выгодно применять готовые микросхемы промышленных серий, инверторы.
  3. Результирующее напряжение переменное, часто прямоугольной формы. При необходимости усиливается, умножается или понижается (при помощи коммутируемых конденсаторов), выпрямляется, получается нужная полярность (преобразователь полярности напряжения). Заметим: эти каскады иногда выполнены на микросхемах. Мультиплексоры широко применяются для коммутации конденсаторов, запасающих мощность.

Преобразователь напряжения не строится напрямую без трансформатора. Однако если отклоняться от строго определения, удастся решить разнообразные задачи. Любой мультивибратор содержит цепочку RC, что и применил Тесла. Для получения напряжения нужно полярности применяется должным образом выполненное включение диодов и фильтрующих конденсаторов. Выпрямитель делается мостовым (см. Диодный мост).

Подобные схемы на практике встречаются в электронике по простой причине: сложно получить высокую мощность. Не создано полупроводниковых ключей, обходящих ограничение, емкости конденсаторов потребовались бы просто гигантские. Поэтому производители постоянно борются за экономию электроэнергии.

Системный блок ПК применяет импульсные трансформаторы, генерации стабильной чистоты используются кварцевые резонаторы. Укажем отличие. Работа с высокочастотным напряжением, позволяет значительно уменьшить количество запасенной за период колебания энергии. Габариты трансформаторов можно сильно уменьшить, вредные ферромагнитные сердечники выбросить вовсе, понизив вес. Имеются конструктивные особенности и другого рода. Как пишет выдающийся схемотехник М.А. Шустов:

  1. Индуктивные преобразователи меньших габаритов при прочих равных. Поэтому применяются для повышенных мощностей. Что видим на примере трансформаторов.
  2. Что касается емкостных преобразователей, выгодно использовать для малых мощностей. Вспомним о мультивибраторах с RC цепочкой.

Источник: https://contur-sb.com/kakovo-naznachenie-preobrazovatelya-elektricheskoy-energii/