Индуктивные датчики положения принцип действия

Принцип работы индуктивных датчиков перемещения

Индуктивные датчики положения принцип действия

Предлагаем Вам ознакомиться с физическими основами работы индуктивных датчиков перемещения производства компании RDP Electronics Ltd (United Kingdom), с их основными параметрами, преимуществами и сферами применения.

Сам термин LVDT (Linear Variable Differential Transformer) — означает линейный дифференциальный трансформатор с переменным коэффициентом передачи.

Рассмотрим принцип работы датчиков на LVDT технологии.

Первичная возбуждающая обмотка
Вторичная обмотка 1
Вторичная обмотка 2
Результирующий сигнал от суммы вторичных обмоток

В принципе имеется две схемы работы — с выходным напряжением и выходным током.

Схема работы с выходным током (4-20мА) Схема работы с выходным напряжением

Рассмотрим более детально сам процесс измерения перемещения.

Датчик перемещения, работающий по технологии LVDT, состоит из трех обмоток трансформатора — одной первичной и двух вторичных. Степень передачи тока между первичной и двумя вторичными обмотками определяется положением подвижного магнитного сердечника, штока. Вторичные обмотки трансформатора соединены в противофазе.

При нахождении штока в середине трансформатора, напряжение на двух вторичных обмотках равны по амплитуде, а т. к. они соединены противофазно, суммарное напряжение на выходе равно нулю — перемещения нет.

Если шток перемещается от серединного положения в какую либо сторону — происходит увеличение напряжения в одной из вторичных обмоток и уменьшение в другой. В результате суммарное напряжение будет не нулевым — датчик будет фиксировать смещение штока.

Соотношение выходной фазы сигнала по сравнению с фазой возбуждающего сигнала дает возможность электронике понять, в какой части обмотки находится в данный момент шток.

Основная особенность принципа работы индуктивных датчиков перемещения состоит в том, что прямой электрический контакт между чувствительным элементом и трансформатором отсутствует (связь осуществляется через магнитное поле), что дает пользователям абсолютные данные по перемещению, теоретически бесконечную точность разрешения и очень долгий срок службы датчика.

Особенности схемы работы с выходным током — т. к. цепь генератор/демодулятор встроена в сам датчик перемещения и питается от выходного тока 4-20 мА, то нет необходимости во внешнем оборудовании для формирования сигнала.

Особенности схемы работы с выходным напряжением — цепь генератор/демодулятор, встроенная в датчик перемещения обеспечивает возбуждение и преобразует сигнал обратной связи в напряжение постоянного тока. При этом так же не требуется внешнее оборудование для формирования сигнала.

Особенности измерения выходного сигнала.
1) Если выходное напряжение измеряется не фазочувствительным (среднеквадратичным) вольтметром, то отклонение штока в любую сторону от центрального положения в трансформаторе датчика будет соответствовать увеличению выходного напряжения.

Заметим, что кривая не касается горизонтальной оси. Это происходит из-за остаточного выходного напряжения.

2) Если используется фазочувствительная демодуляция, то по выходному сигналу можно судить, в какой части трансформатора находится шток в данный момент.

Для формирования сигнала всегда используется фазочувствительная демодуляция, т.к. это исключает влияние на выходной сигнал остаточного выходного напряжения и позволяет пользователю знать положение штока в трансформаторе.

Диапазон линейности индуктивного датчика перемещения.
Если мы рассмотрим выходную кривую вне механического диапазона типичного LVDT датчика, то можно заметить, что на краях диапазона кривая изгибается. Это значит, что механический диапазон существенно шире линейного участка работы.

При калибровке датчика, важно, что электрическая нулевая точка используется в качестве ссылки, и что датчик используется в пределах ± FS (полного диапазона) вокруг электрического нулевом положения.

Если проводить калибровку не беря за основу точку ноля вольт, одно из положений полного диапазона будет за пределами линейного диапазона и, следовательно, может привести к ошибке линейности.

Типы индуктивных датчиков перемещения

Тип 1 — несвязанные преобразователи, которые имеют якорь, который отделен от тела корпуса. Части датчика должны быть установлены таким образом, что якорь не прикасался к внутренней трубке корпуса. Сделав это, можно получить абсолютное отсутствие трения при движении чувствительного элемента датчика.

Читайте также  Терморезисторы принцип работы

Тип 2 — монолитные преобразователи, которые имеют тефлоновый подшипник, который направляет якорь (шток) по внутренней трубке.

Тип 3 — монолитные преобразователи с возвратной пружиной, которая толкает якорь (шток) наружу.

Преимущества индуктивных датчиков перемещения LVDT

1. Преимущества над линейными потенциометрами (POTS).

  • Не имеют контакта корпуса и внутренних деталей с чувствительным элементом, что означает, что нет никакого износа при движении штока. POTS датчики имеют контакт с чувствительным элементом и могут быстро изнашиваются, особенно под воздействием вибрации.
  • Можно легко обеспечить защиту от влаги и пыли на требуемом уровне, даже стандартные версии LVDT датчиков обычно имеют гораздо лучший уровень защиты от внешний воздействий, чем POTS.
  • Вибрация не вызывает влияния на пропадание сигнала, в отличие от POTS, где скользящий бегунок может прервать контакт с проводником при вибрации.

2. Преимущества над магнитострикционными датчиками.

  • Не восприимчивы к ударам и вибрации.
  • Менее восприимчивы к паразитным магнитным полям окружающей среды.
  • Система формирования сигнала может быть удалена от чувствительного элемента на некоторое расстояние, что позволяет использовать датчики при работе с высокой температурой и высоким уровнем радиации.
  • Магнитострикционные датчики не имеют короткого штока ±100мм или менее, а это как раз наиболее востребованный диапазон технического применения датчиков перемещения.

3. Преимущества над кодерами (датчиками положения).

  • Имеют лучший аналоговый частотный отклик.
  • Имеют более прочный корпус.
  • Сразу после включения «знают» положение штока, в отличии от кодеров, которым надо указывать постоянную ссылку на известное положение.

4. Преимущества над переменными векторными резистивными преобразователями (VRVT)

  • LVDT датчики как правило более дешевы.
  • Имеют меньший диаметр корпуса.
  • Более прочные и не изнашиваются.
  • Могут использоваться значительно дольше.

5. Преимущества над линейными емкостными датчиками

  • LVDT датчики как правило более дешевы.
  • Менее восприимчивы к внешним условиям эксплуатации.
  • Значительно более прочные.

Особенности индуктивных датчиков перемещения LVDT

  • Максимальная рабочая температура 600°C.
  • Минимальная рабочая температура –220°C (для справки, температура жидкого азота -196°C, температура жидкого гелия -269°С). 
  • Могут работать при уровне радиации 100,000 рад.
  • Могут работать при давлении 200Бар.
  • Могут работать под водой, при этом вода может попадать внутрь датчика не причиняя ему вреда. Существует специальная серия подводных датчиков, которые могут без тех. осмотра работать под водов в течении 10-ти лет, работать под водой на глубине до 2,2км. Кабельные разъемы могут подсоединяться так же под водой.

Основные сферы применения LVDT датчиков

Промышленные измерительные системы

  • Регулирующие вентили — везде, где существуют регулирующие вентили индуктивные датчики перемещения могут быть использованы для контроля положения штока вентиля. Особенно, где есть ответственные участки работы, например, в клапанах пара для турбин на электростанциях.
  • Контроль положения шлюзов — погружные датчики перемещения подходят для измерения положения шлюзов в водохозяйственных и канализационных системах.
  • Измерение зазора между валками. Для поддержания равномерной толщины проката зазор между валками часто измеряется на обоих концах.
  • Контроль перемещения штоков вентилей на подводных нефте/газо проводах.
  • Контроль работы гидравлических активаторов — измерение перемещения объекта, который передвигает активатор. Благодаря очен высокой износостойкости, данные LVDT датчики перемещения могут выдерживать миллионы циклов перемещения.
  • Контроль положения/перемещения режущих инструментов, отрезающих рулонные материалы.
  • Измеряет положение/смещение роликов, которые используется для выпрямления полосового проката перед штамповкой.
  • Могут быть использованы для динамического измерения размеров (диаметров) рулонов продукта, например, инициировать сигнал к системе управления, когда рулон достигает максимального/минимального размера при наматывании/сматывании материала.

Станки

  • Могут быть использованы в испытательных приспособлениях для измерения круглости, плоскостности и т.д. частей машин для анализа качества их изготовления.
  • Могут быть использованы для оценки и контроля взаимного расположения компонентов деталей в сборке, когда требуется юстировка/подгонка размеров взаимного расположения деталей.

Авиация/космонавтика

  • Могут быть использованы для оценки реакции привода на действие активатора. Например, преобразователь измеряет положение отклонения закрылков крыла самолета при техническом обслуживании. Тут очень важно измерить скорость срабатывания активатора после подачи на него управляющего сигнала, а так же скорость изменения положения закрылков.
  • Анализ Ротора вертолета Датчики LVDT используются на вертолетах, чтобы измерить угол наклона лопастей ротора.
  • Могут быть использованы для оценки смещения корпуса двигателя при нагревании.
  • Могут быть использованы для измерения смещения (деформации) лопасти турбины при внешнем воздействии.
  • Могут быть использованы для измерения отклонения диафрагмы сопла реактивного двигателя.
  • Могут быть использованы для испытания крыльев самолетов для измерения их отклонения при нагрузке.
Читайте также  Двухходовой клапан принцип работы

Строительство / Проектирование зданий и сооружений

  • Могут быть использованы для измерения вибрации или деформации мостов при изменении трафика движения или порывов ветра.
  • Могут быть использованы для измерения смещения грунта при строительстве, контроля оползней и насыпных дамб.
  • Могут быть использованы при испытании крупногабаритных строительных конструкций, балок, пролетов моста и т. д. на силовую деформацию.

Автомобилестроение

  • Могут быть использованы для контроля смещения корпуса двигателя при его испытаниях.
  • Идеальным применением LVDT датчиков может быть тестирование компонентов подвески автотранспорта.
  • Могут быть использованы для контроля изготовления прецизионных компонентов.
  • Могут быть использованы для настройки компонентов двигателя, таких как дизельные форсунки.
  • Могут быть использованы для тестирования сидений, дверей, педалей и ручек транспортных средств для моделирования продления их срока службы.
  • Могут быть использованы для измерения профиля поверхности заготовки, например стекла или других площадных объектов.

Выработка энергии

  • Могут быть использованы для измерения биения вала турбины.
  • Могут быть использованы для контроля положения главного парового клапана, который регулирует поток пара в турбину. Клапан постоянно корректирует свое положения для поддержания постоянной скорости вращения турбины. LVDT датчики идеально подходят для работы в зоне высоких температур, грязи и постоянной вибрации.
  • Могут быть использованы для контроля положения перепускного клапана. Когда откроется перепускной клапан, датчик может испытать температуру 200°C.

Источник: http://www.ndt-td.ru/katalog/tenzometricheskoe-oborudovanie/tenzometricheskie-datchiki/datchiki-peremescheniya/induktivnie-datchiki-peremescheniya-lvdt/princip-raboty-induktivnyh-datchikov-peremeshcheniya.html

Индуктивные датчики от производителя НПК ТЕКО Челябинск. Купить бесконтактный индуктивный датчик положения в Челябинске

Индуктивные датчики положения принцип действия

по параметрам по аналогам по маркировке

Или скачайте каталог индуктивных датчиков в .pdf (12,3 мб)

Индуктивный датчик — это устройство, реагирующее только на металл. Принцип действия таких устройств основан на изменении амплитуды колебаний генератора при внесении в чувствительную зону выключателя металлического, магнитного, ферромагнитного или аморфного материала определенных размеров.

При подаче питания на конечный выключатель в области его чувствительной поверхности образуется изменяющееся магнитное поле, наводящее во внесенном в зону материале вихревые токи, которые приводят к изменению амплитуды колебаний генератора. В результате вырабатывается аналоговый выходной сигнал, величина которого изменяется от расстояния между устройством и контролируемым предметом.

Триггер преобразует аналоговый сигнал в логический, устанавливая уровень переключения и величину гистерезиса.

Назначение, особенности и области применения индуктивных датчиков

Индуктивный датчик – это бесконтактный индуктивный выключатель реагирующий на приближение металлических объектов. Другими словами, такой датчик позволяет обнаружить металлический объект на некотором расстоянии, не соприкасаясь с ним.

Основной отличительной особенностью индуктивных датчиков является их нечувствительность к неметаллическим объектам. Исключение составляют такие материалы как ферриты. Также к важными преимуществам можно отнести:

  • срабатывание только на металл и абсолютная нечувствительность к другим материалам (например, в отличии от емкостных датчиков);
  • возможность распознавания различных групп металлов;
  • долговечность, благодаря отсутствию механического воздействия и износа.
  • простоту конструкции, настройки и монтажа
  • стабильность и надёжность
  • устойчивость к загрязнениям
  • доступное и недорогое решение задач
  • возможность работы с чёрными и цветными металлами, а также сплавами

Такие свойства позволяют применять индуктивные датчики для автоматизации различных технологических процессов в самом широком спектре отраслей: в металлургии; машиностроении; в добывающей, в частности нефтедобывающей; нефтеперерабатывающей; химической; лёгкой; пищевой и многих других отраслях промышленности.

Так индуктивные датчики применяют для:

  • обнаружения
  • подсчёта
  • определения положения
  • скорости и перемещения металлических объектов

Другие примеры применения индуктивных датчиков.

Принцип работы индуктивного датчика

Индуктивные бесконтактные выключатели компании «ТЕКО» Челябинск состоят из следующих основных узлов:

Электромагнитная система → Генератор → Демодулятор → Пороговое устройство → Выходной усилитель.

Для того, чтобы понять принцип работы индуктивного датчика, разберём каждое составляющее его конструкции.

Электромагнитная система — её также называют чувствительным элементом датчика. Электромагнитная система является частью генератора. Она представляет собой катушку индуктивности, помещенную в магнитопровод. Чаще всего это круглая ферритовая чашка. Чашки в зависимости от габаритов датчика могут иметь диаметр от 3,3 мм до 150 мм.

С внешней стороны ферритовый сердечник закрыт диэлектрическим колпачком. Его торцевая часть называется чувствительной поверхностью. Область перед чувствительной поверхностью является зоной чувствительности датчика. Там сконцентрировано магнитное поле. Оно распространяется примерно на половину диаметра датчика.

Читайте также  Кварцевый резонатор принцип работы

Генератор — это та часть электронной схемы датчика, которая вырабатывает электрические колебания. Генератор формирует переменное электромагнитное поле, в сечении напоминающее букву М.

Катушка индуктивности и конденсатор (устройство для накопления заряда и энергии электрического поля) образуют колебательный контур. Генератор вырабатывает незатухающие синусоидальные колебания. При попадании металлического объекта в зону чувствительности датчика в нём образуются вихревые токи. Они создают встречный магнитный поток, демпфирующий колебания контура. Другими словами, происходит затухание электромагнитных колебаний, уменьшается их амплитуда. Чем ближе металлический объект к чувствительной поверхности датчика и чем больше его размер, тем сильнее затухание.

Демодулятор или детектор, он же выпрямитель, преобразует изменение высокочастотных колебаний генератора в изменение постоянного напряжения.

Пороговое устройство сравнивает переданное демодулятором напряжение с заранее установленным порогом срабатывания.

При достижении порога формируется логический сигнал «0 или 1» (т. е. «выключение / или включение»). Таким образом, пороговое устройство преобразует аналоговый сигнал детектора в «цифровой»выходной, его ещё называют дискретным.

В качестве порогового устройства используются как транзисторные, так и микросхемные варианты компараторов и триггеров Шмитта. Особенностью порогового устройства является то, что пороги переключения из «0» в «1» и из «1» в «0» не совпадают. Это делается преднамеренно для повышения помехоустойчивости датчика. Данное свойство называют гистерезисом.

Выходной усилитель увеличивает мощность выходного сигнала до необходимого значения для передачи последующим устройствам. Выходной усилитель часто называют выходным ключом, так как он оперирует логическими значениями 0 и 1.

В качестве выходного ключа могут использоваться транзисторы разных типов, тиристоры (симисторы), реле электромагнитные, реле твердотельные, оптроны, специализированные микросхемы (интеллектуальные ключи).

Электромагнитная система, генератор, демодулятор, пороговое устройство и выходной усилитель являются основой индуктивных датчиков.

Наглядно, принцип работы индуктивного датчика мы показали в видео-ролике:

Где применили первый в мире индуктивный датчик?

Это случилось в 1958 году в германском городе Мангейме. Тогда у крупной химической компании BASF появилась необходимость в надежном устройстве, которое могло бы работать во взрывоопасной зоне химического завода, выполняя тысячи циклов переключения при очень низких токах.

За разработку решения взялась лаборатория компании по производству электронных компонентов Pepperl+Fuchs. Одному из основателей компании Вальтеру Пепперлу и его коллеге Вильфриду Гелю удалось разработать альтернативу механическим контактным выключателям — это был первый в мире датчик приближения в комплекте с первым транзисторным усилителем с искробезопасной схемой управления.

Так, более 60 лет назад был изобретен бесконтактный переключатель, который стал всемирно признанным стандартом индустрии бесконтактных переключателей, а также отправной точкой в истории успеха компании. Этому событию посвящена бронзовая плита на аллее славы Мангейма.

Свойства индуктивных датчиков:

  • Исполнение постоянного DC, переменного AC и постоянного/переменного DC/AC напряжения;
  • Возможности разного подключения: двух-, трех-, четырехпроводное. Способы подключения: кабель, разъем, клеммы.
  • Размеры корпусов от Ø 4 мм до 170х170х60 мм.
  • Механизм защиты от перегрузок и короткого замыкания.
  • Светодиодная индикация срабатывания и питания.
  • Степени защиты IP65, IP67, IP68.
  • Стойкость к высокому давлению – до 500 бар.
  • Различные варианты исполнения – высокотемпературный до + 150°С, низкотемпературный до -60°С.

  • Датчики стойки к пульсации питающего напряжения до 67%, а так же приспособлены к работе в бортовой системе автомобилей.
  • Возможно взрывозащищенное исполнение.
  • Стойкость к химически активным средам.
  • Дискретный или аналоговый выход определения положения объекта воздействия относительно датчика.
  • Решение специальных задач (датчики минимальной скорости).

С сертификатом соответствия бесконтактных выключателей типа IS требованиям TP TC 004/2011 «О безопасности низковольтного оборудования» (выдан 02.08.

2016 года) можно ознакомиться здесь.

https://www.youtube.com/watch?v=_UAYKrtny68

Индуктивные бесконтактные датчики положения постоянного тока изготавливаются в соответствии с техническими условиями ВТИЮ.3428.006.2006 ТУ.

Как подобрать индуктивный датчик для решения конкретной задачи?

Для правильного подбора индуктивных датчиков рекомендуем посмотреть обучающий видео-ролик:

Источник: https://teko-com.ru/katalog/induktivnye-datchiki/